Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(16): 7786-7824, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38568434

RESUMO

Nanozymes, as a type of nanomaterials with enzymatic catalytic activity, have demonstrated tremendous potential in cancer treatment owing to their unique biomedical properties. However, the heterogeneity of tumors and the complex tumor microenvironment pose significant challenges to the in vivo catalytic efficacy of traditional nanozymes. Drawing inspiration from natural enzymes, scientists are now using biomimetic design to build nanozymes from the ground up. This approach aims to replicate the key characteristics of natural enzymes, including active structures, catalytic processes, and the ability to adapt to the tumor environment. This achieves selective optimization of nanozyme catalytic performance and therapeutic effects. This review takes a deep dive into the use of these biomimetically designed nanozymes in cancer treatment. It explores a range of biomimetic design strategies, from structural and process mimicry to advanced functional biomimicry. A significant focus is on tweaking the nanozyme structures to boost their catalytic performance, integrating them into complex enzyme networks similar to those in biological systems, and adjusting functions like altering tumor metabolism, reshaping the tumor environment, and enhancing drug delivery. The review also covers the applications of specially designed nanozymes in pan-cancer treatment, from catalytic therapy to improved traditional methods like chemotherapy, radiotherapy, and sonodynamic therapy, specifically analyzing the anti-tumor mechanisms of different therapeutic combination systems. Through rational design, these biomimetically designed nanozymes not only deepen the understanding of the regulatory mechanisms of nanozyme structure and performance but also adapt profoundly to tumor physiology, optimizing therapeutic effects and paving new pathways for innovative cancer treatment.


Assuntos
Materiais Biomiméticos , Nanoestruturas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/terapia , Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Catálise , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Microambiente Tumoral/efeitos dos fármacos , Biomimética
2.
Cancer Med ; 13(6): e7112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509769

RESUMO

BACKGROUND: Patients with non-small cell lung cancer (NSCLC) and chronic obstructive pulmonary disease (COPD) experience worse clinical outcomes but respond better to immunotherapy than patients with NSCLC without COPD. Mucosal-associated invariant T (MAIT) cells, a versatile population of innate immune T lymphocytes, have a crucial function in the response to infection and tumors. This study investigated the distribution of MAIT cells in COPD-associated NSCLC and their involvement in the immune response. METHODS: Flow cytometry, immunohistochemistry, and immunofluorescence were performed on tissue samples of patients with NSCLC, with or without COPD, treated with or without anti-programmed death 1 (PD1) immunotherapy. MAIT cells were stimulated with 5-OP-RU using a mouse subcutaneous tumor model. RESULTS: Tumors contained significantly more MAIT cells than paraneoplastic tissues, and CD8+ MAIT cells accounted for more than 90% of these cells. Patients with NSCLC and COPD had higher CD8+ MAIT cell counts than those with NSCLC without COPD. Additionally, patients with NSCLC and COPD displayed reduced expression of the activation marker, CD69, and functional markers, granzyme B (GZMB) and interferon γ (IFNγ), and higher expression of the immune exhaustion marker, PD1. Among patients who received immunotherapy, the proportion with a complete or partial response was higher in those with COPD than in those without COPD. In patients with NSCLC and COPD, the major pathologic response (MPR) group had higher MAIT levels than those in the no major pathologic response (NPR) group. In the mouse subcutaneous tumor model stimulation of MAIT cells using 5-OP-RU enhanced the antitumor effects of anti-PD1. CONCLUSIONS: In patients with NSCLC and COPD, response to immunotherapy is associated with accumulation of CD8+ MAIT cells showing immune exhaustion. These findings may contribute to innovative approaches for immunotherapy targeting CD8+ MAIT cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células T Invariantes Associadas à Mucosa , Doença Pulmonar Obstrutiva Crônica , Ribitol/análogos & derivados , Uracila/análogos & derivados , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Células T Invariantes Associadas à Mucosa/metabolismo , Células T Invariantes Associadas à Mucosa/patologia , Neoplasias Pulmonares/metabolismo , Terapia Neoadjuvante , Biomarcadores/metabolismo , Doença Pulmonar Obstrutiva Crônica/terapia , Imunoterapia
3.
BMC Cancer ; 24(1): 396, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553708

RESUMO

BACKGROUND: Emerging data suggested a favorable outcome in advanced non-small cell lung cancer (NSCLC) with chronic obstructive pulmonary disease (COPD) patients treated by immunotherapy. The objective of this study was to investigate the effectiveness of neoadjuvant immunotherapy among NSCLC with COPD versus NSCLC without COPD and explore the potential mechanistic links. PATIENTS AND METHODS: Patients with NSCLC receiving neoadjuvant immunotherapy and surgery at Shanghai Pulmonary Hospital between November 2020 and January 2023 were reviewed. The assessment of neoadjuvant immunotherapy's effectiveness was conducted based on the major pathologic response (MPR). The gene expression profile was investigated by RNA sequencing data. Immune cell proportions were examined using flow cytometry. The association between gene expression, immune cells, and pathologic response was validated by immunohistochemistry and single-cell data. RESULTS: A total of 230 NSCLC patients who received neoadjuvant immunotherapy were analyzed, including 60 (26.1%) with COPD. Multivariate logistic regression demonstrated that COPD was a predictor for MPR after neoadjuvant immunotherapy [odds ratio (OR), 2.490; 95% confidence interval (CI), 1.295-4.912; P = 0.007]. NSCLC with COPD showed a down-regulation of HERV-H LTR-associating protein 2 (HHLA2), which was an immune checkpoint molecule, and the HHLA2low group demonstrated the enrichment of CD8+CD103+ tissue-resident memory T cells (TRM) compared to the HHLA2high group (11.9% vs. 4.2%, P = 0.013). Single-cell analysis revealed TRM enrichment in the MPR group. Similarly, NSCLC with COPD exhibited a higher proportion of CD8+CD103+TRM compared to NSCLC without COPD (11.9% vs. 4.6%, P = 0.040). CONCLUSIONS: The study identified NSCLC with COPD as a favorable lung cancer type for neoadjuvant immunotherapy, offering a new perspective on the multimodality treatment of this patient population. Down-regulated HHLA2 in NSCLC with COPD might improve the MPR rate to neoadjuvant immunotherapy owing to the enrichment of CD8+CD103+TRM. TRIAL REGISTRATION: Approval for the collection and utilization of clinical samples was granted by the Ethics Committee of Shanghai Pulmonary Hospital (Approval number: K23-228).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/genética , Terapia Neoadjuvante , China , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/terapia , Imunoterapia , Imunoglobulinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...